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This is afinal reportfor NASA GrantNAG-l-1050.
Work leadingup to this grantwasperformedby ProfessorOrtegaanda graduatestudent,

David Harrar, supportedby an NSFFellowshipand the NASA Grad-AeroGrant NAG-I-242.
Theirwork, doneundertheguidanceof Dr. T. Zangof NASA-Langley,wasconcemedwith the
solutionof thethreedimensionalgeneralizedPoissonequation

V(KVu) =f (1)

CRAY-2 codes for a SSOR polynomial preconditionedconjugate gradient method were
developedandthefollowing paperswerepublished

D. Harrar and J. Ortega, "Optimum m-step SSORPreconditioning,"J. Appl. Comp.

Math., 24, 1988, pp. 195-198.

D. Harrar and J. Ortega, "Multicoloring with Lots of Colors," Proceedings of the Third

International Conference on Supercomputing, 1989, pp. 1-6.

D. Harrar and J. Ortega, "Solution of Three-Dimensional Generalized Poisson Equations

on Vector Computers," Iterative Methods for Large Linear Systems (D. Kincaid and

L. Hayes, eds.), Academic Press, 1990, pp. 173-191.

Under the present grant, work was continued on this problem in several ways. One of the

most promising techniques in the work of Harrar and Ortega was the reduced system conjugate

gradient (RSCG) method which arises when one-step SSOR preconditioned conjugate gradient is

applied to the red-black ordered equations. Lori Freitag, a Ph.D. student in Applied

Mathematics, has continued the development of this algorithm with emphasis on a parallel

version suitable for the Intel hypercubes, in particular, the iPSC/860.

Ms. Freitag has made numerous extensions and modifications to the previous CRAY-2

code. The previous code treated only Dirichlet boundary conditions whereas the present one

handles combinations of Dirichlet, Neumann and periodic boundary conditions. A consequence

of having only periodic and Neumann conditions for (1) is that the coefficient matrix can be

singular. We have clarified and extended somewhat the theory of the conjugate gradient method

when applied to singular systems. Ms. Freitag has also developed parallel codes for the RSCG

method for the Intel iPSC/860. These codes are currently running for a Helmholtz equation in

which a term cyu is added to (1). This work was helped by Charles Leete, a masters degree

student, who during the summer of 1990 at Langley Research Center transferred a previous code

by S. Krist to the iPSC/860.

Another project relating to equation (1) was carried out by Robert Falgout, also supported

by NASA Grant NAG-I-242. He considered multigrid methods for (1) when the equation is

discretized with variable grid spacing. Here, a geometric approach to multigrid is not very

satisfactory so he combined the standard geometric approach with the algebraic approach. (In

the algebraic approach, the restriction and prolongation operators are defined in terms of the

matrix, not the grid.) These algebraic-geometric multigrid methods have advantages in certain

situations. Details on this study appear in Mr. Falgout's Ph.D. thesis.

Brett Averick, also supported by NAG-I-242, completed his Ph.D. thesis, which included

the development of methods for (1) when K is a function of u so that the problem is nonlinear.
In this case, the Jacobian matrix of the corresponding discrete equations is not symmetric
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althoughthe skew-symmetrictermsaresmall. We usethis fact to approximatetheJacobianby
A (u), which is symmetric and positive definite. This gives rise to an approximate Newton

method with fast linear convergence, rather than quadratic convergence. The linear systems at

each stage are solved approximately by the incomplete Cholesky preconditioned conjugate

gradient method with a variable convergence criterion; this allows relatively few conjugate

gradient iterations until the iterates are near the solution. Problems on a 63x63x63 grid (250,000
unknowns) are solved on a single processor of the CRAY-2 in 15 - 20 seconds, depending on the

initial approximation. A paper on this work by Averick and Ortega will appear in the journal of

Applied Numerical Mathematics. Subsequent to the completion of the paper, another very

promising approach has been developed based on the formulation of (1) as VZqb(u)=f. If q_ is a

function such that _'(u)=K(u), then

V2(_(u) = V(_'(u)Vu) = V(K (u)Vu), (2)

and (2) is equivalent to (1). Thus, we obtain the solution of (1), in principle, by the two stage

process:
I. Solve the Poisson equation

V2w =f . (3)

II. Solve one-dimensional nonlinear equations

_(Up)=Wp, (4)

where wp denotes the solution of (4) at a point P in the domain. The equations (4) can all be
solved in parallel, and with no communication on a distributed memory machine. Provided that

the domain is such that a Fast Poisson Solver can be used for (3), the method is very fast. A

paper on this approach is now being prepared for publication. This work was jointly sponsored

by NASA Grant NAG-l-1112-FDP.

Narinder Nayer began work during the summer of 1990 on computing eigenvalues of

generalized eigenvalue problems involved in stability analysis. One way of proceeding is by

converting the generalized problem to a standard eigenvalue problem. There were two

approaches here. The first one uses efficient routines (LAPACK) to do the necessary tasks. The

second approach was to reorder the problem to reduce the number of operations and then use

LAPACK. We were reasonably successful in both these approaches. Using the LAPACK

library reduced the time required for the conversion of the generalized problem to the standard

problem by approximately a factor of 4. Reordering reduced the time further by a factor 2.

Eigenvalue computation is the computer intensive part of the computation. The original code
uses the LR method but, since the LR method is a potentially unstable algorithm, we

implemented the QR algorithm. However, since the QR method has an operation count of four

times the LR algorithm, the time required for calculating all the eigenvalues increases despite

using the LAPACK libraries.

We now are in the process of investigating iterative methods for the eigenvalue problem,

and computing only a few eigenvalues rather than the whole spectrum. Initially, we have

implemented Arnoldi's algorithm which approximates the eigenvalues by building a sequence of

Hessenberg matrices. The eigenvalues of these Hessenberg matrices are the approximations to

the eigenvalues of the original matrix. To accelerate convergence towards the desired

eigenvalues, we use the shift and invert strategy. This process transforms the generalized



eigenvalueprobleminto a standardone. The code uses the QR implementation of LAPACK to

compute the eigenvalues of the Hessenberg matrix. The initial results are encouraging,

especially for the larger problem sizes. The speeds can be improved by using the existing LR

implementation to calculate the eigenvalues of the Hessenberg matrix. We also plan to compare

Arnoldi's algorithm with other algorithms like nonsymmetric Lanczos.
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